Daily tips and tricks from the experts at Adafruit!
View this email in your browser

[ Found on StatNews ]

DARPA has announced that eight lucky teams will be sharing over $50 million dollars in funding to research the effects of brain and spinal cord stimulation. Most teams are looking at stimulating the vagal nerve externally while the others are utilizing transcranial magnetic stimulation for the entire brain area. Studies like this one have documented possible positive effects for enhanced verbal memory, speech perception and vocabulary.

[ Via DARPA ]

The institutions listed below are leading teams exploring aspects of using stimulation to activate plasticity.

  • An Arizona State University team led by Dr. Stephen Helms Tillery is targeting stimulation of the trigeminal nerve to promote synaptic plasticity in the sensorimotor and visual systems of the brain. Through partnerships with the Air Force Research Laboratory, the U.S. Air Force’s 711th Human Performance Wing, and the U.S. Army Research Institute of Environmental Medicine, the team will evaluate TNT stimulation protocols with two groups of volunteers—one studying intelligence, surveillance, and reconnaissance, and another practicing marksmanship and decision-making.
  • A Johns Hopkins University team led by Dr. Xiaoqin Wang is focusing on regions of the brain involved in speech and hearing to understand the effects of plasticity on language learning. The team will compare the efficacy of invasive versus non-invasive vagal nerve stimulation (VNS), testing the ability of volunteers to discriminate phonemes, learn words and grammar, and produce the unique sounds demanded by some foreign languages.
  • In one of two efforts DARPA is funding at the University of Florida, a team led by Dr. Kevin Otto is identifying which neural pathways in the brain VNS activates. The team will also conduct behavioral studies in rodents to determine the impact of VNS on perception, executive function, decision-making, and spatial navigation.
  • In the second University of Florida effort, a team led by Dr. Karim Oweiss will use an all-optical approach combining fluorescent imaging and optogenetics to interrogate the neural circuity that connects neuromodulatory centers in the deep brain to decision-making regions in the prefrontal cortex, and optimize VNS parameters around this circuitry to accelerate learning of auditory discrimination tasks by rodents.
  • A University of Maryland effort led by Dr. Henk Haarmann is studying the impact of VNS on foreign language learning. His team will use electroencephalography (EEG) to examine the effects of VNS on neural function during speech perception, vocabulary, and grammar training.
  • A University of Texas at Dallas team led by Dr. Mike Kilgard is identifying optimal stimulation parameters to maximize plasticity, and comparing the effects of invasive versus non-invasive stimulation in individuals with tinnitus as they perform complex skill-learning tasks such as acquiring a foreign language. The team will also investigate the longevity of stimulation effects to determine if follow-up training is needed for long-term retention of learned skills.
  • A University of Wisconsin team led by Dr. Justin Williams is using state-of-the-art optical imaging, electrophysiology, and neurochemical sensing techniques in animal models to measure the influence of vagal and trigeminal nerve stimulation on boosting activity of neuromodulatory neurons in the brain.
  • A Wright State University team led by Dr. Timothy Broderick is focusing on identifying epigenetic markers of neuroplasticity and indicators of an individual’s response to VNS. Through a partnership with the Air Force Research Laboratory and the U.S. Air Force’s 711th Human Performance Wing, the team will also work with volunteer intelligence analyst trainees studying object and threat recognition to determine the impact of non-invasive VNS on that training.